
Response to Prof. Milgrom and Prof. Ausubel’s
Comments on the Second Wye River

Package Bidding Conference

Kevin Leyton-Brown
kevinlb@cs.stanford.edu

In this document I respond to three sections of Prof. Milgrom and Prof.
Ausubel’s analysis in their Comments on the Second Wye River Package Bid-
ding Conference. First I examine the expressivity of the auction #31 bidding
language. Second I discuss some computational issues that arise from the choice
of bidding language, concentrating on computational benefits of the OR-of-XOR
language and on how additional features required for straightforward bidding
could be added to the OR-of-XOR language without serious computational con-
sequences. Finally I argue that it should not be computationally necessary for
the auctioneer to drop bids from one round to the next. I quote from Prof. Mil-
grom and Prof. Ausubel directly in each case to put my comments in context.

1 Auction #31 Bidding Language Expressivity

Prof. Milgrom and Prof. Ausubel wrote:

As for the bidder interface, the computer scientists conception dif-
ferentiates among alternative package designs partly on the basis on
the “expressiveness” of the “bidding language,” that is, the ability of
bidders to make bids that accurately reflect their own package prefer-
ences or values. The auction #31 interface necessarily connects bids
within each round using the logical disjunction “OR.” This means
that if a bidder makes, say, two bids in a round, the auctioneer can
accept one or the other or BOTH. A problem with these rules is that
this OR language fails to be “fully expressive.” A bidder who wants
to acquire either A or B but NOT both cannot express this prefer-
ence with a bid made in a single round. The FCC mitigated that
problem for auction #31 by adopting Pauls suggestion that bids in
different rounds should be treated as mutually exclusive alternatives
(called an “XOR” relationship), while allowing a bidder who does
not want bids to be mutually exclusive to renew them in the current
round.

1

The actual auction #31 rules thus involves a hybrid of OR and XOR
expressions that seems to have confused some commentators. Focus-
ing on the bidding rules within a single round apparently led some
to conceive of auction #31 as essentially using the “OR” language.
If only OR bids were permitted, withdrawals would be needed to
allow a bidder who has bid on A and now wants to bid on B to avoid
the exposure problem. In the actual auction #31 rules, however, the
mutual exclusivity of bids across rounds eliminates the inter-round
exposure problem and with it the need to allow bid withdrawals as
protection.

When bids expire after two rounds—as I understand that they do under the
current auction #31 rules—then these rules do not induce a fully expressive
bidding language even when bids across rounds are considered. A consequence
is that the inter-round exposure problem cannot be completely overcome under
the current rules. In this case the auction implements a bidding language of the
form:

{bid OR bid OR . . . OR bid} XOR {bid OR bid OR . . . OR bid}.

This is certainly more expressive than the OR language. For example a bid-
der who valued A XOR B, as in Prof. Milgrom and Prof. Ausubel’s example,
would be able to express this valuation in the auction #31 language but not
in the OR language (ignoring differences in the bidder’s treatment under the
auction rules for placing a set of bids across two rounds rather than in a sin-
gle round). Indeed, as Prof. Milgrom and Prof. Ausubel point out, the fact
that bidders may renew the same bid from one round to another means that
the auction #31 language is strictly more expressive than the OR language.
However, the auction #31 language can still not represent the valuation of a
bidder who wants A XOR B XOR C as it allows only two sets of bids to be
mutually exclusive. Indeed, auction #31 bids are not fully expressive as long as
they expire after any number n of rounds, because a set of n + 1 XOR’ed bids
could not be expressed. Likewise, even without bid expiration, a bidder cannot
express the desire for n + 1 bids to be mutually exclusive in the nth round of
the auction. Finally, a bidder cannot update the price offer on more than one
bid per round without causing the side effect that the two updated bids may
be jointly satisfied. It is only when bids never expire, bidders get an arbitrarily
large number of rounds in which to place XOR bids, and bidders are guaran-
teed not to update more than one bid per round that we get the XOR-of-OR
bidding language, which is a superset of the XOR language and therefore fully
expressive.

2

2 Computational Issues in Bidding Languages

Prof. Milgrom and Prof. Ausubel wrote:

The OR-of-XOR structure is said to have two advantages over the
XOR structure. First, to the extent that bidders wish to place bids
with a corresponding additive structure, it enables bidders to do so
easily and compactly. However, straightforward bids in an ascend-
ing package auction do not generally have such an additive struc-
ture. The goal should be to create a simple interface that makes
straightforward bidding easy. This requirement is orthogonal to the
OR-of-XOR structural issues.

The second advantage of OR-of-XOR is that reporting bids in this
form simplifies the winner determination problem. This is useful,
but secondary. Still, it is encouraging that computer scientist Kevin
Leyton-Brown reported that it would be possible to keep these com-
putational advantages of an OR-of-XOR interface even with the
changes required to make straightforward bidding easy.

I will respond to two issues here. First, I’ll elaborate upon what is meant
by the claim that the OR-of-XOR’s bidding language improves computation.
Second, I’ll go through some of the bidding language modifications that would
support straightforward bidding, and discuss their computational consequences.

2.1 Computational Advantages of OR-of-XOR

As long as bidders are allowed to place fully expressive OR-of-XOR bids, they
are also allowed to place simple XOR bids.1 This means that there is no compu-
tational benefit to an OR-of-XOR bidding language over a simple XOR bidding
language if bidders’ bids never have an additive structure, as bidders will place
simple XOR bids in both cases. However, even in this degenerate case, there is
no additional computational cost for offering an OR-of-XOR bidding language.
In practise there will be computational savings if the OR-of-XOR language is
ever used by bidders; furthermore bidders will have access to a more compact
and intuitive way of specifying their valuations when their valuations include
additivity.

To see where this computational savings comes from, and to see why there
is a computational advantage to using either an OR-of-XOR or simple XOR
language instead of the XOR-of-OR language regardless of whether bids have
an additive structure, it is useful to consider how the bidding language interacts
with the optimization algorithm. Intuitively, most ways of setting up the op-
timization problem do not give the algorithm information about which bidders
placed which bids; instead, the algorithm considers the set of all bids to be in-
dependently satisfiable (thus, OR’ed). This works for bids that originated from

1When bidders submit only a single XOR’ed set, OR-of-XOR bids are equivalent to simple
XOR bids.

3

different bidders, but as just stated does not allow bidders to specify mutual
exclusivity between their bids. A solution that Yoav Shoham and I proposed is
to introduce “dummy goods” into bids: goods that are not actually sold in the
auction, but which are added to all bids in an XOR set so that the optimization
algorithm cannot allocate more than one of them.2

If we consider the process of “expanding out” bids from the bidding language
into OR bids with dummy goods, we see that simple XOR bids will have a single
unique dummy good added to all bids by the same bidder. We can also represent
OR-of-XOR bids with a single dummy good, but we have to create more bids:
essentially we have to ignore the additivity between the bidder’s valuations for
the XOR’ed sets and make a single bid for every set of bids that could be
allocated to the bidder. In the worst case if there are m sets and each set i
contains ni goods, the number of bids we will have after the expansion is:

m
∏

i=1

(

2ni − 1
)

.

This is terrible: the number of expanded bids grows exponentially with the
size of the largest set and geometrically with the number of sets. For example,
two sets of ten bids each can translate into more than a million bids! Luckily
there is a way of expanding out the OR-of-XOR language that does not increase
the number of bids at all: we can use a unique dummy good for each XOR’ed set
rather than for each bidder. This approach requires slightly more dummy goods
(equal to the total number of sets rather than the number of bidders) but reduces
the number of bids by exploiting the additive structure in the bidder’s valuation.
Essentially, we do not have to explicitly expand out all the full bundles in which
the bidder is interested—instead, we can use the optimization algorithm’s OR
language to represent these sets implicitly. Continuing the previous example,
two sets of ten bids each could be represented with twenty bids and two dummy
goods. Since this second expansion technique creates exponentially-fewer bids
in the worst case, it can lead to much shorter running times for the optimization
algorithm.

Unfortunately, things do not work so well when expanding out bids that
were expressed in the XOR-of-OR language. As long as there is more than one
XOR set (in the case of auction #31, as long as a bidder has placed any bids
in each of two consecutive rounds) we have no alternative to expanding out the
bids as above, making a new bid for every set of old bids that could be allocated
to each bidder. As above, the expansion generates

∏m
i=1(2

ni − 1) bids. This
illustrates why the use of XOR’s is expensive in auction #31: increasing the
number of sets causes a geometric increase in the number of bids, which has the
potential to significantly slow down the optimization algorithm.

2Alternate techniques exist, but I stick here to the one I’m most familiar with. The same
issues I describe would come up under other schemes too, because dummy goods are essentially
a way of thinking about the addition of new constraints between bids, and the number of bids
once dummy goods have been added is a way of thinking about the size of the search space
given the new constraints.

4

In the worst case the OR-of-XOR bidding language does not yield computa-
tional benefits, because bidders’ valuations may not have any additive structure
for this language to exploit. Likewise, bidders using the XOR-of-OR language
can also place simple XOR bids by submitting OR sets of one bid each. In
this worst case, there is no computational difference between using the two lan-
guages. However, there are types of structure in bidders’ valuations that each
bidding language can exploit. The important difference between the languages
is that when structure does exist, the OR-of-XOR language leverages this struc-
ture to achieve better computational performance with search algorithms such
as CPLEX or Prof. Sandholm’s BidTree, whereas the XOR-of-OR language
does not.

2.2 Additional bidding language features

Here I’ll go through some additional bidding language features that are impor-
tant for real FCC auctions, and discuss how they can be incorporated into the
OR-of-XOR bidding language.

2.2.1 A fixed amount to be subtracted from the price offer regardless
of the number of bids that win

Consider a situation where a bidder wants to indicate that he will pay $10M for
A OR $11M for B OR $12M for C, but that it will cost him an additional $2M
to participate in the market at all. If this bidder had to use the standard OR-of-
XOR bidding language he would have no choice but to submit a single XOR set
containing all 7 bundles of interest to him with the appropriate price offers (e.g.,
$8 for A; $19 for AB, etc.). As above, the size of this set is exponential in the
number of original OR bids. However, it is possible to add such constraints to
the OR-of-XOR bidding language in a way that captures the additive structure
in this bidder’s valuation, enabling him to place only the three OR bids and the
fixed amount. We can create constraints:

∀i x′ − xi ≥ 0

where xi is an indicator variable for a bids by this bidder, and x′ is a new
indicator variable. In the objective function, we add the bidder’s fixed cost of
participation times x′ (since the fixed cost is a negative number). This feature
would require changes to the user interface, but it should not have a significant
computational impact as all constraints are 0-1.

Although the fixed-cost-of-participation example might seem somewhat con-
trived, it turns out that the feature described above has an application to the
support of straightforward bidding (as described by Milgrom and Ausubel).
Straightforward bidders need to be able to increment all bids from the previ-
ous round by the same amount. Under a simple XOR bidding language this
is trivial: all bid amounts may simply be adjusted. It is less obvious to know
what to do under a bidding language that includes OR, as it is possible for more
than one bid by each bidder to win. The fixed cost of participation solves this

5

problem: in the first round the fixed cost is set to zero (or to a positive number
if the bidder really does have a fixed cost of entering the market) and then each
round the fixed cost is incremented by the bid increment amount.

2.2.2 Budget limits

It is possible to envisage two different sorts of budget limits that bidders could
place.

1. Bidders are allowed to specify the total amount that they would be willing
to pay for any set of bundles as a single budget limit. They are restricted
from placing single bids exceeding this amount (as these bids trivially
violate the budget constraint) but they can place OR bids that could
lead to allocations exceeding the limit. The optimization algorithm adds
constraints ensuring that a bidder can never be allocated bids exceeding
his budget limit. For example, if A, B and C are bids for $10M, and the
bidder has a $25M budget limit, the bid A OR B OR C would be allowed,
but at most two of the bids would be allowed to win.

2. Bidders may place budget limits on particular bundles. Continuing the
above example, the bidder could indicate that the budget limit is $30M if
he is allocated A, and $10M if he is not. This sort of budget limit may be
questionable as in a sense it is another kind of bidding—in the extreme
case where a bidder gives a budget limit for every bundle, there is no
difference between specifying budget limits and bidding. In any case, I
mention it here because it was discussed at the conference, and because
the use of this sort of budget constraint is computationally feasible.

There are at least two ways that budget constraints could be encoded in an
integer programming formulation:

1. For each bidder, the sum of the bidder’s bid amounts times the relevant
indicator variables is constrained to be less than the bidder’s budget limit.
This requires only a single IP constraint for each budget constraint. How-
ever, the constraint does not use 0-1 coefficients, and so the addition of
such constraints may have a significant computational effect.

2. An alternative that does use 0-1 coefficients is to preprocess the bidder’s
bids to find all minimal satisfiable sets of bids that violate a budget con-
straint. For each minimal satisfiable set the sum of the corresponding
indicator variables is constrained to be less than the number of variables
in the constraint. For example, if x1, x10, x13 and x14 are indicator vari-
ables for bids by the same bidder which are jointly satisfiable according
to the rules of the bidding language, these bids have a combined price
offer that violates a budget constraint, and no subset of these bids have
a combined price offer that violates a budget constraint, then the con-
straint is x1 + x10 + x13 + x14 < 3. The construction of these constraints

6

is not computationally trivial (it requires time exponential in the number
of bids placed by a single bidder) but it may be done as a preprocessing
step, before other bidders have finished entering their bids. It is also worth
mentioning that this approach has the potential to create a large number
of constraints.

The use of budget constraints does affect computation, but the effect is not
worsened by the use of the OR-of-XOR bidding language. In fact, if the use
of this language leads to a smaller number of expanded bids then the budget
constraints should also have a correspondingly smaller computational impact.

2.2.3 Bids that contradict earlier OR constraints

In a multi-round auction where bids cannot be withdrawn, bidders have a dis-
incentive to split their bids into different XOR sets even when additivity exists
in their valuations: they might decide later in the auction to place a bid that is
XOR with bids in more than one set. For example, a bidder may have bid:

{A XOR B XOR C} OR {D XOR E} OR {F XOR G}

but could later decide to place the bid ABD, while still wanting it to be
XOR with C and E. Since users have no economic disincentive for placing all
their bids in a single XOR set, there is the danger that bidders would choose
this strategy. (Note, however, that there is a practical disincentive for placing
all bids in a single XOR set: it can require bidders to specify exponentially more
bids!) The disincentive for OR bidding can be removed by allowing bidders to
“merge” multiple XOR sets from a previous round, performing the exponential
expansion described in the previous section, and allowing bidders to add new
XOR bids to these sets. Thus bidders can end up with the same set of bids
that they would have had if they had used the simple XOR bidding language
all along, while retaining the computational and practical advantages of OR-of-
XOR bidding in early rounds. Continuing the example, the bidder could merge
the first two sets, so that his bid becomes:

{A XOR AD XOR AE XOR B XOR BD XOR BE

XOR C XOR CD XOR CE XOR D XOR E} OR {F XOR G}

He could then add the bid for ABD to the first set. Note that the last set
remains OR’ed, since it does not need to be merged in order for the new bid
to be placed. Thus some compactness in the representation can be preserved
even after sets are merged. As an aside, it might be desirable to maintain the
OR-of-XOR representation internally after merging, until the bidder places a
bid that requires that the sets be joined. This could of course be hidden from
the user so that sets appear to merge even if new bids are not placed.

It is no surprise that merging sets has negative computational effects: it
causes a blowup in the number of bids. However, there is another way of think-
ing about the computational cost of this feature: if users would otherwise submit

7

only single XOR sets, set merging may be seen as advantageous from a compu-
tational point of view because it removes the disincentive for users to submit
OR-of-XOR bids.

3 Retaining a subset of bids from round to round

Prof. Milgrom and Prof. Ausubel wrote:

If voluntary bid withdrawals are eliminated, the auctioneer may still
wish, at its own initiative, to prune the bid list to simplify the com-
putations during the auction. (We are agnostic about the need for
such pruning, limiting our recommendation to how to proceed if
pruning is to be implemented.) In this case, the bid quality index
serves a second purpose: to guide the auctioneers decision about
which bids to retain from round to round. One possibility is to re-
tain each bidders N best bids, defined as any provisionally winning
bids plus the highest quality bids among the others. In that way, bids
with which other bidders might usefully combine are less likely to be
prematurely deleted from the auction. The retained bids might also
automatically include the most recent bids, in order to allow other
bidders time to combine with new bids that are submitted.

Indeed, I think that Prof. Milgrom and Prof. Ausubel’s agnosticism is
warranted here: there are four reasons why I think that the auctioneer should
not drop bids between rounds.

1. As Prof. Sandholm described in his talk at the Wye conference, the worst-
case complexity of winner determination is polynomial in the number of
bids. This means that the number of bids is not critical to the performance
of the optimization algorithm, although of course worst-case runtime for
optimization increases with the number of bids. Instead, the critical vari-
able is the number of goods, which is decided by the auctioneer before the
auction begins. This challenges the premise that pruning bids should ever
be “necessary” for computational reasons.

2. If “low quality” bids are dropped then it is unlikely that the computational
difficulty of the problem would be substantially changed. An optimization
algorithm can usually remove uncompetitive bids from consideration with
little computational effort, while the hardness of the problem is primarily
determined by the more competitive bids.

3. There is no known technique for reliably predicting whether a given winner
determination problem will be easy or hard.3 Larger problems are harder
on average, but it is not true that every large instance is harder than every

3This statement is no longer strictly true: since I wrote the first version of this document
our group at Stanford, in collaboration with another group at Cornell, has been striving to
develop techniques to address this problem. Though we’ve had some success at predicting

8

smaller instance. For example, if a very high bid is added to an existing
set of bids, it might make the problem easier to solve because it is easy
to prove that the high bid should be allocated, quickly eliminating many
other bids. Thus, even if it were sometimes necessary for the auctioneer to
drop bids, it might not be possible for the auctioneer to know this without
solving the optimization problem.

4. I suspect that bid dropping from round to round would change economic
incentives for bidders. I believe that computer scientists should do every-
thing possible to avoid sacrificing economic desiderata for computational
reasons; in this case, the computational problem is not overwhelming, and
so dropping bids between rounds is probably not necessary.

whether winner determination problems will be easy or hard, our results are still preliminary.
We are still a long way from understanding the empirical hardness of winner determination
instances well enough for the FCC to rely upon our predictions in a real auction.

9

